Introduction

The Slotted Block Tie (Type II) system consists of a double-Slotted Block Plate (a vertically oriented steel plate), a V-Tie™ (a V-shaped steel wire), and an Insulation Support (a polyethylene retainer). Individual components are shown in Figures 1, 2 and 3; the assembly is shown in Figure 4; and the installed tie system is illustrated in Figure 5.

When compared to the Slotted Block Tie (Type I), which uses a single slot rather than two shorter slots, the Slotted Block Tie (Type II) offers greater vertical adjustability, reduced displacement, and higher strength.

The Slotted Block Plate is embedded directly in a mortared head joint in the concrete block masonry structural backing (Cover Illustration, and Figure 5). The V-Tie™ is inserted through either of the two vertical slots along the outboard end of the Slotted Block Plate. Lateral loads applied to the masonry veneer are transferred through the V-Tie™ to the Block Plate. Direct embedment in the concrete masonry offers positive connection, reduced connector free play and deflection, increased connector strength, elimination of fasteners, and increased masonry productivity. The closed vertical slot provides a positive connection without the possibility of V-Tie™ disengagement during construction and in-service (in accordance with the requirements of CSA A370 and ACI 530.1/ASCE 6/TMS 602). The double slots permit up to 60 mm (2.4") of in-situ vertical adjustment so that a bed joint in the masonry veneer will always be coincident with the V-Tie™ regardless of the vertical positioning of the Block Plate. The vertical slots also accommodate in-service vertical differential movement between the masonry veneer and the masonry structural backing.
The Insulation Support is inserted over the end of the Slotted Block Plate and is restrained by the V-Tie™. It mechanically fixes the cavity insulation securely in place.

The Slotted Block Tie (Type II) can accommodate a range of insulation thicknesses from 0 to 102 mm (0 to 4”) and air space widths of 25 mm (1”) and greater. The Block Plate has sufficient length to accommodate the thickness of the cavity insulation, and further extends 18 mm (0.7”) into the air space to expose its leading edge and facilitate in-situ placement of the V-Tie™ and Insulation Support. The V-Tie™ is inserted through a vertical slot in the Block Plate and placed coincident with a mortar bed joint so as to extend horizontally and normal to the structural backing, thereby maintaining design tie capacity. The legs of the V-Tie™ are positioned along the centreline of the masonry veneer within the placement tolerances permitted by the building code having jurisdiction. Adjustment normal to the wall is facilitated by on-site selection of an appropriate length of V-Tie™.

The Slotted Block Tie (Type II) transfers forces perpendicular to the wall, but not parallel to the wall. Therefore, composite action cannot be achieved between the masonry veneer and the structural backing. For the design of shear connected masonry cavity wall systems (i.e. wall construction using composite action), see Fero Block Shear™ Connector product literature.

Components and Specifications

Slotted Block Plate (Type II): The Slotted Block Plate (Type II) (Figure 1) is manufactured from 16 gauge sheet steel [1.367 mm (0.0538”) minimum base steel thickness] and is available in both hot-dip galvanized finish and stainless steel. The weight of hot-dip galvanized finish is not less than 460 g/m²/side (1.5 oz/ft²/side), and satisfies the requirements of CSA A370 (which references ASTM A123), ACI 530.1/ASCE 6/TMS 602 (which references ASTM A153, Class B), and the International Building Code (IBC) (which reference ASTM A153, Class B).

The Slotted Block Plate (Type II) specification length, (B), refers to the actual width of the concrete block masonry unit into which the Plate is embedded (Figure 5); the specification length, (I), refers to the actual thickness of the insulation plus sheathing membrane; and the length, (P), refers to the length of projection of the Slotted Block Plate (Type II) into the air space.

The overall length of the Slotted Block Plate (Type II) is 18 mm (0.7”), (P), longer than the specification lengths (B + I). Specification length can vary to accommodate: standard concrete block widths, (B), of 90 mm (3-5/8”), 140 mm (5-5/8”), 190 mm (7-5/8”), 240 mm (9-5/8”) and 290 mm (11-5/8”); and insulation plus sheathing membrane thickness, (I), of 0 mm (0”) and greater.

The two 30 mm (1.2”) long by 5.8 mm (0.23”) wide slots along the outboard end of the Slotted Block Plate (Type II) facilitates 60 mm (2.4”) of construction adjustability and in-service differential movement between the Block Plate and the V-Tie™.

Shear keys (19Φ and 25Φ holes) in the web and corrugations along the flange pedestal of the Block Plate provide fixity during construction, and resistance to in-service tension loads. A notch formed in the web by the flange pedestal assures proper positioning of the Block Plate within the concrete block masonry structural backing.

The incorporation of 12Φ and 19Φ holes through the web body, which are located within the cavity insulation when the Block Plate is suitably embedded, minimizes thermal conductivity of the tie system and associated thermal bridging through the wall system.
V-Tie™: The V-Tie™ (Figure 2) is manufactured from 4.76 mm (0.19") diameter wire and is available in both hot-dip galvanized finish and stainless steel. The weight of hot-dip galvanized finish is not less than 460 g/m² (1.5 oz/ft²) and satisfies the requirements of CSA A370 (which references ASTM A123), ACI 530.1/ASCE 6/TMS 602 (which references ASTM A153, 458 g/m²) and the International Building Code (IBC) (which reference ASTM A153, Class B, 458 g/m²).

The V-Tie™ is available in a variety of standard lengths to accommodate different specified thicknesses of masonry veneer and design widths of air space. The V-Tie™ specification length, (L), should be selected to provide for placement of the legs of the V-Tie™ along the centreline of the masonry veneer. Various lengths of V-Tie™, appropriately selected by the mason on the jobsite, facilitate in-situ adjustment normal to the structural backing (to accommodate construction tolerances) where the constructed width of air space differs from the design width of air space. Standard lengths of V-Tie™ include 60 mm (2.4"), 80 mm (3.1"), 100 mm (3.9"), 120 mm (4.7"), 140 mm (5.5"), 160 mm (6.3"), 180 mm (7.1"), 200 mm (7.9"), 225 mm (8.9") and 250 mm (9.8"). For example, the 60 mm (2.4") V-Tie™ is utilized in the Slotted Block Tie (Type II) system consisting of 25 mm (1") air space and 90 mm (3.5") masonry veneer.

Insulation Support: The Insulation Support (Figure 3) is manufactured from polyethylene. It is pressed over the outboard end of the Slotted Block Plate tightly against the cavity insulation to prevent the insulation from separating from the structural backing/air barrier. The friction fit between the Insulation Support and the Slotted Block Plate restrains the insulation during construction. Subsequent installation of the V-Tie™ sandwiches the Insulation Support between the insulation and V-Tie™, thereby locking the Insulation Support in place and ensuring a reliable and permanent insulation support system.

The insulation support is a standard component of the system, but it is optional where the insulation is otherwise supported, and not required where no insulation is placed within the air space.

The Slotted Block Tie (Type II) is designed to transfer the lateral load from the exterior masonry veneer axially and normal to the structural backing. The connection between the V-Tie™ and Slotted Block Plate by way of a vertical slot does not resist differential movement between the structural backing and the masonry veneer in the vertical direction, and therefore, does not offer composite action between the structural backing and the masonry veneer. For the design of shear connected masonry cavity wall systems (i.e. wall construction using composite action), see Fero Block Shear™ Connector product literature.
Slotted Block Tie (Type II) Design Data

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Design Data (Canada)</th>
<th>Design Data (United States)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mechanical Free Play: 0.50 mm (max) (0.02")</td>
<td>0.02" (max) (0.50 mm)</td>
<td>0.02" (max) (0.50 mm)</td>
</tr>
<tr>
<td>2. Serviceability at 0.45 kN (100 lbs): 0.10 mm (0.004")</td>
<td>0.004" (0.10 mm)</td>
<td>0.004" (0.10 mm)</td>
</tr>
<tr>
<td>3. Factored Resistance: Pult</td>
<td>3.0 kN (675 lbs.)</td>
<td>335 lbs (1.5 kN)</td>
</tr>
<tr>
<td>4. Maximum Recommended Spacing: 820 mm (32") Horizontal; 600 mm (24") Vertical</td>
<td>32"(813 mm) Horizontal; 18"(457 mm) Vertical</td>
<td>32"(813 mm) Horizontal; 18"(457 mm) Vertical</td>
</tr>
</tbody>
</table>

Notes:
(i) These design data are based on connector testing in accordance with CSA A370-14, Connectors for Masonry, with no surcharge and with test samples having the following configuration: 127 mm (5") cavity; Slotted Block Tie (Type II) having I of 102 mm (4") and 25 mm (1") air space; standard FERO V-Tie™; and V-Tie™ engaged into Block Plate at centerline of vertical adjustment of a slot. Smaller cavity widths and/or the addition of insulations providing lateral support to the Block Plate Tie will increase the tabled factored resistance of the tie and reduce tie deflection.
(ii) These design data reflect both the windward (compression) and leeward (tension) capacities of the Slotted Block Tie (Type II) system, with the governing values listed.
(iii) The Slotted Block Tie (Type II) satisfies the limiting requirements for serviceability (tie displacement and mechanical free play) in CSA A370-14. Tabled mechanical free play is for stainless steel components. The mechanical free play for hot-dip galvanized components is less.

Slotted Block Tie (Type II) Design Data (Canada)

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Design Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mechanical Free Play:</td>
<td>0.02" (max) (0.50 mm)</td>
</tr>
<tr>
<td>2. Serviceability at 0.45 kN (100 lbs):</td>
<td>0.004" (0.10 mm)</td>
</tr>
<tr>
<td>3. Factored Resistance: Pult</td>
<td>3.0 kN (675 lbs.)</td>
</tr>
<tr>
<td>4. Maximum Recommended Spacing: 820 mm (32") Horizontal; 600 mm (24") Vertical</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(i) These design data are based on connector testing in accordance with CSA A370-14, Connectors for Masonry, with no surcharge and with test samples having the following configuration: 127 mm (5") cavity; Slotted Block Tie (Type II) having I of 102 mm (4") and 25 mm (1") air space; standard FERO V-Tie™; and V-Tie™ engaged into Block Plate at centerline of vertical adjustment of a slot. Smaller cavity widths and/or the addition of insulations providing lateral support to the Block Plate Tie will increase the tabled factored resistance of the tie and reduce tie deflection.
(ii) These design data reflect both the windward (compression) and leeward (tension) capacities of the Slotted Block Tie (Type II) system, with the governing values listed.
(iii) The Slotted Block Tie (Type II) satisfies the limiting requirements for serviceability (tie displacement and mechanical free play) in CSA A370-14. Tabled mechanical free play is for stainless steel components. The mechanical free play for hot-dip galvanized components is less.

Design Philosophy: Robert G. Drysdale, Ph. D., P.Eng., President of Drysdale Engineering and Associates Limited, examined masonry tie usage in a brief report entitled "Structural Requirements for Non-Loadbearing Masonry Backwall Systems Potential for Composite Action", dated September 4, 1991. In his report, Drysdale comments, "Theoretical (composites) work is a very attractive engineering idea. He further states that...Literature, calculations, and studies used to develop design information for such systems must clearly show not only the benefits of the coupling of the two wythes, but also the detrimental effects of restrained differential movements." Drysdale concludes by noting, "At this point in time, practice and 'conventional' wisdom have not moved independently in the plane of the wall, and ties have specifically been designed to accommodate such movements."

The design of the Slotted Block Tie (Type II) not only satisfies this "conven tional" wisdom, but also has been engineered to eliminate many issues problematic for the multi-component tie. By directly embedding the Block Tie into the concrete block masonry structural backing, it offers positive restraint between tie components to prevent disengagement, reduced mechanical free play limited deformation under load, and elimination of fasteners.

*The effects of restrained differential movement associated with shear connected walls has been addressed in Prairie Masonry Research Institute technical booklet entitled "Differential Movement in Cavity Walls and Veneer Walls Due To Material and Environmental Effects", authored by Ajay Goyal, Dr.Michael A. Hatzininikolas and Prof.Joseph Warwaruk, dated August 1992. Although the effects of restrained differential movements are real, their magnitudes were found to be relatively small and readily could be accommodated by composite wall design. This facilitates the use of the FERO Block Shear™Connector which provides composite action between masonry wythes. See Fero Block Shear Connector product literature.

Fero Corporation
15305 - 117 Avenue, Edmonton, Alberta T5M 3X4
Phone: (780) 453-5098 Fax: (780) 452-9969
www.ferocorp.com info@ferocorp.com